Before going BIG - seize opportunities for small data: multistate models to improve decision-making and effect quantification in clinical trials

Kaspar Rufibach

Methods, Collaboration & Outreach Group, Department of Biostatistics, Roche Basel XXXIst Conference of the Austro-Swiss Region of the International Biometric Society 10h September 2019, Lausanne, Switzerland

Where

A multistate model for early decision-making in oncology

Ulrich Beyer ☒, David Dejardin, Matthias Meller, Kaspar Rufibach, Hans Ulrich Burger

First published: 16 July 2019 | https://doi.org/10.1002/bimj.201800250

Simulated dataset + comprehensive R code.

Who

Kaspar Rufibach

Multistate models in clinical trials

2 / 45

How do we typically decide whether to move an oncology molecule into Phase 3?

Kaspar Rufibach Multistate models in clinical trials 3 / 45 Kaspar Rufibach Multistate models in clinical trials 6 / 45

Decision-making in early oncology development

- **1** Small single-arm trial for **experimental** drug (e.g. n = 40).
- 2 Response proportion, duration of response.
- **3** Compare to "corresponding" quantities from literature for **control** treatment.

But:

- P(wrong decision) may be high.
- Primary endpoint in Phase 3: Overall survival.

Proposal:

Decide in early phase based on OS prediction.

Decrease P(wrong decision).

Kaspar Rufibach

Multistate models in clinical trials

7 / 45

Kaspar Rufibach

Multistate models in clinical trials

8 / 45

Prediction?

Prediction?

Blackbox ML algorithm using big data?

Transparent multistate model with historical borrowing.

Kaspar Rufibach Multistate models in clinical trials 9 / 45 Kaspar Rufibach Multistate models in clinical trials 10 / 45

Challenges and proposal

Challenges:

• Response-type endpoint?

Surrogacy? Poor in many indications.

Immunotherapy (CIT): no effect on response, relevant OS effect.

● Non-randomized comparison ⇒ confounding.

Proposal: Base decision-making on OS prediction from multistate model.

Predicted survival function for experimental arm.

② Combine S_{exp} with S_{control} to get predicted OS HR.

■ Experimental drug might act on certain transitions only ⇒ not captured through simple modelling of OS. Potential efficiency gain!

Propensity scoring.

Idealized scenario: Retrospective data from Phase 3 RCTs.

Long-term follow-up in both arms.

Randomization \Rightarrow no confounding.

Kaspar Rufibach

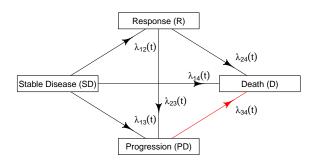
Multistate models in clinical trials

11 / 45

Kaspar Rufibach Multistate models in clinical trials

12 / 45

Multistate model for early decision-making



• Follow-up of patient until PD or death without PD.

ullet Post-progression hazard λ_{34} : borrowing from historical data.

 \bullet Transitions SD \to D, R \to D rare, hazards \approx same in both arms.

Predicted survival function in experimental arm, S_{exp}

Compute transition probabilities for each transition.

$$S_{\text{exp}}(t) = 1 - \left(P_{SD \to D}(0, t) + P_{SD \to PD \to D}(0, t) + P_{SD \to R \to D}(0, t) + P_{SD \to R \to PD \to D}(0, t)\right).$$

 λ_{34} corresponding to PD \rightarrow D transition borrowed from historical data.

Historical borrowing for λ_{34}

Experimental treatment expected to provide benefit beyond PD?

No:

- E.g. chemotherapy or antibody-dependent cellular cytotoxicity.
- Plug-in hazard function estimate from historical control.
- No post-PD information required for experimental arm.

Yes:

- E.g. chemoimmunotherapy.
- Estimate post-PD hazard ratio assuming proportionality.
- How much post-PD deaths needed in experimental arm to reliably estimate post-PD HR?

Kaspar Rufibach

Multistate models in clinical trials

15 / 45

Kaspar Rufibach

Multistate models in clinical trials

Benefit beyond PD: Oak

16 / 45

Oak

Previously treated non-small-cell lung cancer.

Rittmeyer et al. (2017).

	Atezolizumab	Chemotherapy	Hazard ratio
Effect post-PD	expected	not expected	
Objective Response	58 (13.6%)	57 (13.4%)	
Duration of Response	26.3 (10 - ∞)	6.2 (4.9 - 7.6)	
Overall Survival			0.73 (0.62, 0.87)

If this were early phase data - would you initiate Phase 3?

Competitors used this mechanism of action.

Kaspar Rufibach Multistate models in clinical trials 17 / 45 Kaspar Rufibach Multistate models in clinical trials 18 / 45

OS prediction when post-PD hazards assumed proportional

Random variable:

$$Z = \begin{cases} 0 & \text{if patient in control,} \\ 1 & \text{if in experimental group.} \end{cases}$$

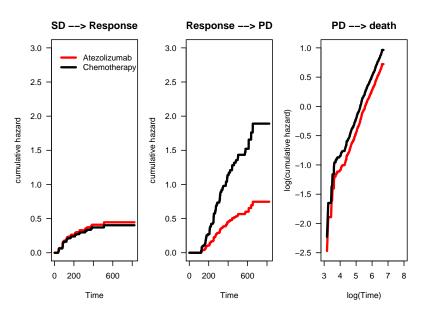
$$\lambda_{34}(t \mid Z) = \lambda_{34,0}(t) \exp(\beta_{34} Z)$$

Baseline hazard $\lambda_{34,0}$ estimated from both arms combined.

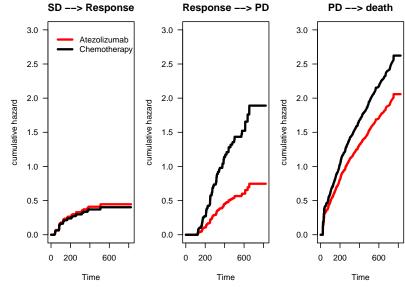
Post-progression hazard ratio β_{34} ?

Kaspar Rufibach Multistate models in clinical trials 19 / 45

Oak: raw cumulative hazard estimates (of interest)

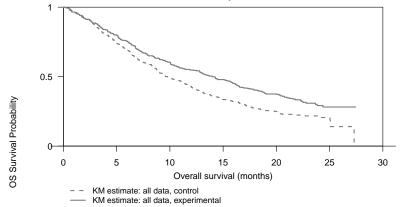


Oak: raw cumulative hazard estimates (of interest)

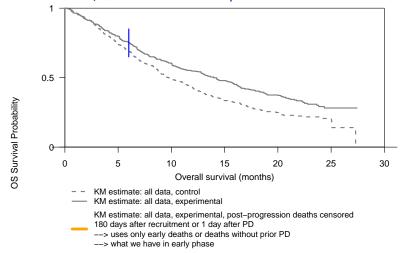


Kaspar Rufibach Multistate models in clinical trials 20 / 45

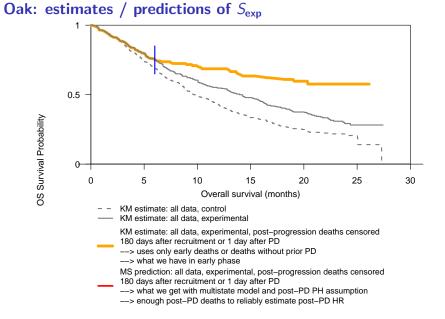
Oak: estimates / predictions of S_{exp}



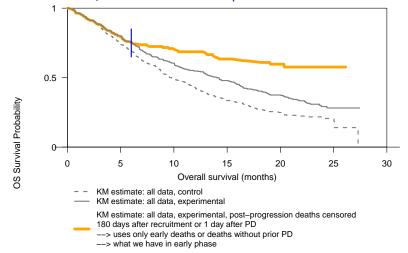
Oak: estimates / predictions of S_{exp}



Kaspar Rufibach Multistate models in clinical trials 25 / 45

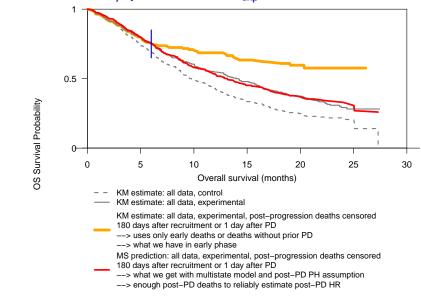


Oak: estimates / predictions of S_{exp}



Kaspar Rufibach Multistate models in clinical trials 26 / 45

Oak: estimates / predictions of S_{exp}



Kaspar Rufibach Multistate models in clinical trials 27 / 45 Kaspar Rufibach Multistate models in clinical trials 28 / 45

Early phase decision based on multistate prediction:

P(wrong decision)?

Kaspar Rufibach Multistate models in clinical trials

OS HR prediction based on early phase trial

Approximate HR by fitting exponential distribution to both arms $\Rightarrow \widehat{HR}$.

Decision to move to Phase 3: $\widehat{HR} \leq \text{boundary} \in \{0.80, 0.85, 0.90, 1.00\}.$

Repeat 1000 times.

Resampling \Rightarrow quantification of uncertainty.

OS prediction from mimicked early phase data

Historical control: Oak control arm data.

False-positive decision: Sample early phase trial from Oak control arm.

False-negative decision: Sample early phase trial from Oak experimental arm.

Sample early phase trial:

- 40 patients,
- 6 months uniform recruitment,
- analysis 15 months after first patient entered,
- censor post-PD follow-up one day after PD,
- estimate $\lambda_{12}, \lambda_{13}, \lambda_{14}, \lambda_{23}, \lambda_{24}$ from this data.

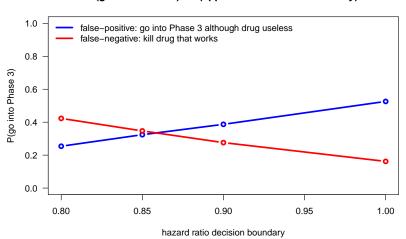
Cox regression for post-PD transition $\Rightarrow \widehat{\lambda}_{34}(t|Z)$.

Compute prediction of S_{exp} .

Kaspar Rufibach Multistate models in clinical trials 30 / 45

Oak: P(wrong decision)

P(go into Phase 3) = P(approximated HR <= boundary)



Kaspar Rufibach Multistate models in clinical trials 31 / 45 Kaspar Rufibach Multistate models in clinical trials 32 / 45

29 / 45

How many post-PD deaths to estimate HR of PD → death transition?

How many post-PD deaths to estimate HR of PD \rightarrow death transition?

Ask during Q&A.

Kaspar Rufibach Multistate models in clinical trials 33 / 45 Kaspar Rufibach Multistate models in clinical trials 33 / 45

Conclusions for early-decision making proposal

Conclusions

Early phase decision-making based on multistate OS prediction:

- Assumption on $\lambda_{34} \Rightarrow$ need to understand disease and treatment.
- Avoids difficulty in interpretation of response-type endpoints.
- Feasibility assessed in idealized scenario.
- Recommendation how much post-PD follow-up needed to estimate β_{34} .
- Needs long-term individual-patient data in control arm!

Kaspar Rufibach Multistate models in clinical trials 34 / 45 Kaspar Rufibach Multistate models in clinical trials 35 / 45

What about confounding?

Real-world data as historical control.

Combine proposal with propensity scoring.

A fictional clinical trial

Multistate models in clinical trials

Kaspar Rufibach

Simulated clinical trial:

- 1:1 randomized, 400 and 400 patients per arm.
- No administrative censoring, but drop-out.

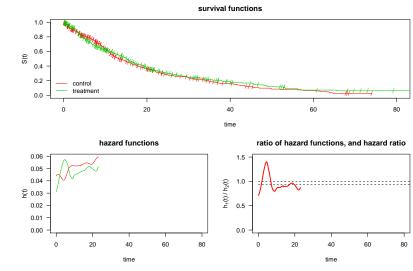
Immunotherapy: 1) no difference in PFS, 2) non-proportional hazards for OS.

How to quantify effect?

PFS for simulated clinical trial

Multistate models in clinical trials

Kaspar Rufibach

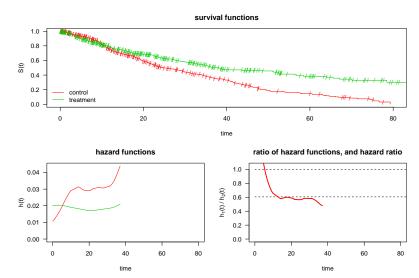


- Estimated hazard ratio: 0.94, 95% confidence interval [0.80, 1.11]
- Hypothesis test for PH: p = 0.24.

 Multistate models in clinical trials

37 / 45

OS for simulated clinical trial



- Estimated hazard ratio: 0.61, 95% confidence interval [0.50, 0.74]
- Hypothesis test for PH: p < 0.0001.

par Rufibach Multistate models in clinical trials 40 / 45

Conclusions

Summarize treatment effect

Non-proportional hazards for OS. How to summarize effect of treatment?

Data was generated according to:

Transition	Control arm	Treatment arm	
$0 \to 1$	$\lambda_{01}^c = \log(2)/25$	$\lambda_{01}^t = \lambda_{01}^c \cdot 1$	
0 → 2	$\lambda_{02}^c = \log(2)/30$	$\lambda_{02}^t = \lambda_{02}^c \cdot 0.8$	
1 o 2	$\lambda_{12}^c = \log(2)/15$	$\lambda_{12}^t = \lambda_{12}^c \cdot 0.4$	

	coef	HR = exp(coef)	95% CI	<i>p</i> -value
transition event-free -> PD	-0.04	0.96	[0.77, 1.19]	0.72
transition event-free -> death	-0.09	0.91	[0.70, 1.18]	0.49
transition PD -> death	-1.09	0.34	[0.24, 0.46]	< 0.0001

Gaschler-Markefski et al. (2014).

Kaspar Rufibach Multistate models in clinical trials 41 / 45

Multistate models

Multistate models useful:

- Canonical extension of survival analysis.
- Get more insight in how disease and drug work.
- Prediction in well-specified, as opposed to black-box, model.
- Jointly model three key oncology endpoints: response, PFS, OS.
- Applications by no means restricted to oncology!

Many potential applications:

- Improved early stage decision-making ⇒ Beyer et al. (2019).
- Improved communication of effect and optimized sample size computation.
- Bivariate modelling of PFS and OS to help inform surrogacy questions ⇒
 Meller et al. (2019).

Kaspar Rufibach Multistate models in clinical trials Conclusions 42 / 45 Kaspar Rufibach Multistate models in clinical trials Conclusions 43 / 48

Big vs. small data

Often, information removed/altered in small data:

- (Artificial) response cateogries instead of actual measurements: dichotomization.
- response proportions only: ignoring the dynamics between states,
- complicated subsets, e.g. those that respond only: selection bias,
- effect quantification in one number where biological process might suggest few numbers.
- ...

Maximize information from small data. AND look at BIG data.

Biostatisticians ideally placed to contribute to this!

Kaspar Rufibach Multistate models in clinical trials Conclusions 44 / 45

References I

Kaspar Rufibach

- Andersen, P. K., Borgan, r., Gill, R. D. and Keiding, N. (1993). Statistical Models Based on Counting Processes. Springer.
- Baselga, J. and Cortes, J. e. a. (2012). Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N. Engl. J. Med. 366 109–119.
- Beyer, U., Dejardin, D., Meller, M., Rufibach, K. and Burger, H. U. (2019). A multistate model for early decision making in oncology. Biom J, to appear.
- Gaschler-Markefski, B., Schiefele, K., Hocke, J. and Fleischer, F. (2014). Multi-state Models Used in Oncology Trials. Springer Berlin Heidelberg, Berlin, Heidelberg, 283–304. https://doi.org/10.1007/978-3-642-55345-5_16
- Meller, M., Beyersmann, J. and Rufibach, K. (2019). Joint modelling of progression-free and overall survival and computation of correlation measures. Stat. Med. 38 4270–4289.
- Rittmeyer, A., Barlesi, F., Waterkamp, D., Park, K., Ciardiello, F., Von Pawel, J., Gadgeel, S. M., Hida, T., Kowalski, D. M., Dols, M. C. et al. (2017). Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (oak): a phase 3, open-label, multicentre randomised controlled trial. *The Lancet* 389 255–265.

Conclusions 45 / 45

Swain, S. M. and Baselga, J. (2015). Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N. Engl. J. Med. 372 724–734.

Multistate models in clinical trials

Thank you for your attention

Conclusions 45 / 45

Doing now what patients need next

R version and packages used to generate these slides:

Multistate models in clinical trials

R version: R version 3.6.0 (2019-04-26)

Kaspar Rufibach

Base packages: stats / graphics / grDevices / utils / datasets / methods / base

Other packages: nls2 / proto / diagram / shape / ggplot2 / rocheBCE / muhaz / flexsurv / reporttools / xtable / mstate / etm / dplyr /

mvna / prodlim / biostatKR / survival

This document was generated on 2019-09-10 at 07:18:18.