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Where

Simulated dataset + comprehensive R code.
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How do we typically decide whether
to move an oncology molecule

into Phase 3?
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Decision-making in early oncology development

1 Small single-arm trial for experimental drug (e.g. n = 40).

2 Response proportion, duration of response.

3 Compare to “corresponding” quantities from literature for control treatment.

But:

P(wrong decision) may be high.

Primary endpoint in Phase 3: Overall survival.
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Proposal:

Decide in early phase based
on OS prediction.

Decrease P(wrong decision).
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Prediction?
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Prediction?

Blackbox ML algorithm using big data?

Transparent multistate model
with historical borrowing.
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Challenges and proposal

Challenges:

1 Response-type endpoint?

2 Surrogacy? Poor in many indications.

3 Immunotherapy (CIT): no effect on response, relevant OS effect.

4 Non-randomized comparison ⇒ confounding.

Proposal: Base decision-making on OS prediction from multistate model.

1 Predicted survival function for experimental arm.

2 Combine Sexp with Scontrol to get predicted OS HR.

3 Experimental drug might act on certain transitions only ⇒ not captured

through simple modelling of OS. Potential efficiency gain!

4 Propensity scoring.
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Idealized scenario: Retrospective data
from Phase 3 RCTs.

Long-term follow-up in both arms.

Randomization ⇒ no confounding.
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Multistate model for early decision-making

λ24(t)

λ23(t)

λ12(t)

λ14(t)

λ13(t)
λ34(t)

Response (R)

Stable Disease (SD) Death (D)

Progression (PD)

Follow-up of patient until PD or death without PD.

Post-progression hazard λ34: borrowing from historical data.

Transitions SD → D, R → D rare, hazards ≈ same in both arms.
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Predicted survival function in experimental arm, Sexp

Compute transition probabilities for each transition.

Sexp(t) = 1−
(
PSD→D(0, t) + PSD→PD→D(0, t) +

PSD→R→D(0, t) + PSD→R→PD→D(0, t)
)
.

λ34 corresponding to PD→ D transition borrowed from historical data.
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Historical borrowing for λ34

Experimental treatment expected to provide benefit beyond PD?

No:

E.g. chemotherapy or antibody-dependent cellular cytotoxicity.

Plug-in hazard function estimate from historical control.

No post-PD information required for experimental arm.

Yes:

E.g. chemoimmunotherapy.

Estimate post-PD hazard ratio assuming proportionality.

How much post-PD deaths needed in experimental arm to reliably

estimate post-PD HR?
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Benefit beyond PD: Oak
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Oak

Previously treated non-small-cell lung cancer.

Rittmeyer et al. (2017).

Atezolizumab Chemotherapy Hazard ratio

Effect post-PD expected not expected

Objective Response 58 (13.6%) 57 (13.4%)

Duration of Response 26.3 (10 - ∞) 6.2 (4.9 - 7.6)

Overall Survival 0.73 (0.62, 0.87)
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If this were early phase data -
would you initiate Phase 3?

Competitors used this
mechanism of action.

Kaspar Rufibach Multistate models in clinical trials 18 / 45



OS prediction when post-PD hazards assumed proportional

Random variable:

Z =

 0 if patient in control,

1 if in experimental group.

λ34(t |Z) = λ34,0(t) exp(β34Z)

Baseline hazard λ34,0 estimated from both arms combined.

Post-progression hazard ratio β34?
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Oak: raw cumulative hazard estimates (of interest)
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Oak: raw cumulative hazard estimates (of interest)
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Oak: estimates / predictions of Sexp
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Oak: estimates / predictions of Sexp
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Oak: estimates / predictions of Sexp
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Early phase decision based on
multistate prediction:

P(wrong decision)?
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OS prediction from mimicked early phase data

Historical control: Oak control arm data.

False-positive decision: Sample early phase trial from Oak control arm.

False-negative decision: Sample early phase trial from Oak experimental arm.

Sample early phase trial:

40 patients,

6 months uniform recruitment,

analysis 15 months after first patient entered,

censor post-PD follow-up one day after PD,

estimate λ12, λ13, λ14, λ23, λ24 from this data.

Cox regression for post-PD transition ⇒ λ̂34(t|Z).

Compute prediction of Sexp.
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OS HR prediction based on early phase trial

Approximate HR by fitting exponential distribution to both arms ⇒ ĤR.

Decision to move to Phase 3: ĤR ≤ boundary ∈ {0.80, 0.85, 0.90, 1.00}.

Repeat 1000 times.

Resampling ⇒ quantification of uncertainty.
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Oak: P(wrong decision)
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How many post-PD deaths to
estimate HR of PD → death transition?

Ask during Q&A.
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How many post-PD deaths to
estimate HR of PD → death transition?

Ask during Q&A.
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Conclusions for early-decision making proposal
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Conclusions

Early phase decision-making based on multistate OS prediction:

Assumption on λ34 ⇒ need to understand disease and treatment.

Avoids difficulty in interpretation of response-type endpoints.

Feasibility assessed in idealized scenario.

Recommendation how much post-PD follow-up needed to estimate β34.

Needs long-term individual-patient data in control arm!
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What about confounding?

Real-world data as historical control.

Combine proposal with propensity scoring.
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Immunotherapy:
1) no difference in PFS,

2) non-proportional hazards for OS.

How to quantify effect?
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A fictional clinical trial

Simulated clinical trial:

1:1 randomized, 400 and 400 patients per arm.

No administrative censoring, but drop-out.
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PFS for simulated clinical trial
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Estimated hazard ratio: 0.94, 95% confidence interval [0.80, 1.11].

Hypothesis test for PH: p = 0.24.
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OS for simulated clinical trial
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Estimated hazard ratio: 0.61, 95% confidence interval [0.50, 0.74].

Hypothesis test for PH: p < 0.0001.
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Summarize treatment effect

Non-proportional hazards for OS. How to summarize effect of treatment?

Data was generated according to:

Transition Control arm Treatment arm

0→ 1 λc
01 = log(2)/25 λt

01 = λc
01 · 1

0→ 2 λc
02 = log(2)/30 λt

02 = λc
02 · 0.8

1→ 2 λc
12 = log(2)/15 λt

12 = λc
12 · 0.4

coef HR = exp(coef) 95% CI p-value

transition event-free –> PD -0.04 0.96 [0.77, 1.19] 0.72
transition event-free –> death -0.09 0.91 [0.70, 1.18] 0.49
transition PD –> death -1.09 0.34 [0.24, 0.46] < 0.0001

Gaschler-Markefski et al. (2014).
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Conclusions
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Multistate models

Multistate models useful:

Canonical extension of survival analysis.

Get more insight in how disease and drug work.

Prediction in well-specified, as opposed to black-box, model.

Jointly model three key oncology endpoints: response, PFS, OS.

Applications by no means restricted to oncology!

Many potential applications:

Improved early stage decision-making ⇒ Beyer et al. (2019).

Improved communication of effect and optimized sample size

computation.

Bivariate modelling of PFS and OS to help inform surrogacy questions ⇒
Meller et al. (2019).
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Big vs. small data

Often, information removed/altered in small data:

(Artificial) response cateogries instead of actual measurements:

dichotomization,

response proportions only: ignoring the dynamics between states,

complicated subsets, e.g. those that respond only: selection bias,

effect quantification in one number where biological process might suggest

few numbers,

...

Maximize information from small data. AND look at BIG data.

Biostatisticians ideally placed to contribute to this!
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Thank you for your attention
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R version and packages used to generate these slides:

R version: R version 3.6.0 (2019-04-26)

Base packages: stats / graphics / grDevices / utils / datasets / methods / base

Other packages: nls2 / proto / diagram / shape / ggplot2 / rocheBCE / muhaz / flexsurv / reporttools / xtable / mstate / etm / dplyr /

mvna / prodlim / biostatKR / survival
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